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ABSTRACT: We demonstrate both theoretically and exper-
imentally the generation of a tunable two-dimensional
superoscillating optical field through the interference of
multiple Airy beams. The resulting pattern exhibits self-healing
properties for a set of sub-Fourier diffraction spots with
decreasing dimensions. Such spatial optical fields might find
applications in microscopy, particle manipulation, and non-
linear optics.
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In 1979, Berry and Balazs1 found a unique solution of the
Schrodinger equation, an infinite nondispersing wave packet

in the form of an Airy function. In 2007,2 Siviloglou et al.
demonstrated their optical analogue in the form of a truncated
Airy beam. Airy beams have been widely demonstrated to
exhibit unique properties such as weak diffraction, ballistic
acceleration,3 and self-healing.4

Various applications have been demonstrated using Airy
beams, such as optical tweezing,5 generation of curved plasma
channels,6 imaging with extreme field of view,7 and super-
resolution imaging.8 Several efforts were made to generate
variants of the Airy beam with improved intensity and reduced
width of its main lobe.9,10

The interference of Airy beams was shown in several cases to
yield interesting results: Lumer et al.11 have demonstrated an
accelerating Talbot effect, while Klein et al.12 demonstrated the
generation of plasmonic hot spots.
In 1988, Aharonov et al.,13 while developing the concept of

quantum weak measurements, have found a family of functions
exhibiting rapid local oscillations exceeding the functions’
highest Fourier component. Such functions are commonly
known today as superoscillating functions. In 2006, Berry and
Popescu14 have introduced superoscillations into optics,
suggesting that superoscillating optical beams can obtain
super-resolution without evanescent waves. This suggestion
was later realized experimentally in a series of works
demonstrating optical super-resolution.15−17 The same concept
was also adopted in the time domain to suggest overcoming
absorption in dielectric materials,18 for realizing sub-Fourier
focusing of radio frequency signals,19 and for achieving
temporal optical super-resolution.20 A nondiffracting super-
oscillating optical beam was also demonstrated.21

In this work, we theoretically and experimentally demon-
strate that a judicious selection of interfering Airy beams
(modes) can create a Superoscillatory Airy Pattern (SOAP)
exhibiting unique properties. In particular, the SOAP contains
oscillations that are faster than those of its highest Airy mode,

leading to an ordered array of sub-Fourier focused light spots.
In addition, the pattern is resilient (to some extent) to
obstruction through the self-healing property of its constituting
modes.

■ THEORY

It was shown by Berry and Popescu that the complex function14
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superoscillates. While the highest Fourier component of this
function is NK0, around x ≈ 0 it oscillates a times faster:
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It is possible to express the imaginary part of eq 1 as a sum of
discrete sine modes having a specific set of amplitudes and
frequencies Cqn and qnK0 correspondingly:
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where k ∈ {odd}, K0 is an arbitrary fundamental spatial
frequency, qn ≡ 2n + μN and μN ≡ mod(N, 2) (where mod
stands for the modulo operation).
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In the present case, instead of using sine functions as the
modes for constructing a superoscillating function, we use a
basis of finite Airy functions:

∑
α α

γ=
⎛
⎝⎜

⎞
⎠⎟f x

A
Ai

x
x( ) exp( )

n

n

n n (4)

where Ai(x) is the Airy function in the variable x, γ is a
common decay rate, An are relative amplitude coefficients, and
αn determine the rate of oscillation of each Airy beam. Using
Stokes’ integral approximation for the Airy function,22 it is
possible to approximate eq 4 to a sum of chirped sine modes
decaying with a common envelope:
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Now we can set An and αn according to eq 3:
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where Kn = qnK0. These assignments result in a function f(x),

which is chirped and superoscillatory as long as <π π
aN4
2 . The

last condition ensures that the spatial shift associated with all
the modes is smaller than the period associated with the local
frequency of the superoscillation (see ref 18). Notice that the
amplitudes An are dependent on the a parameter. As a gets
larger, the SOAP’s superoscillations have higher local
frequency, while their relative amplitude decreases.
A comparison between the amplitudes and intensities of the

highest Airy mode and the SOAP for N = 5 and a = 1.5 is
presented in Figure 1a and b, correspondingly. It is apparent
that the SOAP exhibits local oscillations which are faster than
those carried by its highest Airy component. The locations of
these fast local oscillations are given by

π π= −− ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥x K m

N4m 0
1

2/3

where ∈ +m .
Another very important feature of the SOAP is that its

strongest lobe is narrower and more visible than the main lobe
of the highest Airy mode (see Figure 1b). Such a feature can be

Figure 1. SOAP vs highest Airy mode: theory. (a) [left] The 1D SOAP field amplitude for N = 5 and a = 1.5 vs its highest Airy mode amplitude.
Vertical dashed lines mark the locations where the SOAP superoscillates. A close up of the boxed dotted region is shown to the right. [right] Double
arrows mark the local period of the SOAP in comparison with the period of the highest Airy mode. The superoscillation is found to be approximately
30% faster than the local highest Airy mode oscillation. (b) [left] The 1D SOAP Intensity vs its highest Airy mode intensity. Vertical dashed lines
mark the superoscillations. A close up of the boxed dotted region is shown to the right. [right] Close up of the dotted region. (c) Local frequency of
the SOAP (dotted black line, calculated using an analytical approximation (eq 7)) vs its highest Airy mode (dash-dot red line) as a function of
transverse coordinate. The blue crosses stands for the numerically calculated local frequency of the SOAP. The theoretical local SOAP frequency
exceeds the local frequency of the highest Airy mode by a factor of a = 1.5, while the numerical values exceed it by ∼1.35.
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useful for various applications requiring high spatial resolution.
A similar feature in a modified Airy beam was discovered in
previous works.9,10 In our case, we can easily control the width
and visibility of this feature by changing the N and a
parameters. This can be seen in the experimental results
shown in Figure 4.
Adopting Stoke’s approximation of each Airy mode into the

basic form of superoscillatory functions that we use (eq 1)
r e s u l t s i n t h e f u n c t i o n
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This approximation shows that, at locations given by xm, the
rate of oscillations is a times faster than the frequency of the
highest Airy mode (which by itself oscillates at a local frequency
of NK0√x). This approximation to the local spatial frequency
given with K(x) is compared in Figure 1c, with a numerical
derivation of the actual local frequency around the points xm
(calculated through the zero crossings of the function23) and
with the local frequency of the highest Airy mode (NK0√x). It
can be seen that the agreement between the analytical
estimation and the numerical values is very good (the numerical
values are smaller by ∼10% than the values given by the
analytical approximation). Notice that the function f(x)
superoscillates around the points xm and that the local rate of
these superoscillations increases with x, that is, we have a
chirped pattern of superoscillations.
An experimental realization of the SOAP in this work is made

by the method of computer-generated (Fourier) holography for
which the Fourier transform of the SOAP is applied by an
optical mask created using a Spatial Light Modulator (SLM)
which is illuminated with a Gaussian beam of some width
described through a factor βL. To describe the required mask
we first Fourier transform the one-dimensional (1D) SOAP
function given by eq 4:
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From which we factor a 1D Gaussian envelope:
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Notice that M(k) = Γ(k)eiϕ(k) is described by amplitude Γ(k)
and phase ϕ(k) functions. Now, to generate the required
optical mask in the Fourier plane, which is illuminated by a
two-dimensional optical Gaussian beam, we extend M(k) to
two dimensions: M(kx, ky) = Γ(kx)Γ(ky)ei(ϕ(kx)+ϕ(ky)). It is
possible to represent the required amplitude and phase
modulation through an appropriate phase-only modulation.

We encode the overall amplitude and phase information into a
binary phase-only mask using Lee’s method24 as follows:
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where ≡ Γ Γ
π

q k k k k( , ) arcsin( ( ) ( ))x y x y
1 and Λ is the grating

periodicity of the mask in the x direction. In this case, the
desired SOAP will materialize as the m = ±1 diffraction orders
of light diffracted of the phase-only binary mask M̃(k) .

■ EXPERIMENTAL RESULTS
Our experimental setup (presented in Figure 2) consists of a
532 nm CW laser (Laser Quantum Ventus 532 solo) and a

reflective phase only Spatial Light Modulator (Holoeye Pluto
SLM). The laser light is expanded and collimated before the
SLM, after which it is Fourier transformed using a 50 cm focal
lens. The generated beam after the Fourier plane of the lens is
imaged by a CMOS camera (DataRay WinCamD-LCM4).
Using the scheme described in the previous section we have

generated a collection of binary masks (applied using eq 10)
corresponding to N = 5, that is, a binary mask comprised of
three Airy modes (n = {0, 1, 2}, μN = 1) with various values of
the a parameter. The mask parameters were determined
through eqs 3 and 6 as such:
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γ = 10−5 [m]; and β = ⎡⎣ ⎤⎦10
mL

5 1
2 . The last two parameters were

determined by assuming a Gaussian beam with full width at half
maximum of 7.5 mm impinging on the SLM.
The mask’s carrier period was chosen to be Λ = 74 μm,

which corresponds to a distance of 3.6 mm between adjacent
diffraction orders at the focal point of the lens. This separation
is enough to prevent aliasing in the detected first diffraction
order.

Figure 2. Experimental setup: BE = beam expander; SLM = spatial
light modulator; CAM = CMOS camera; M = mirror; L1, L2, and L3
are lenses. The sum of the distances d1 and d2 equals the lens L3 focal
length. The distances marked with Z are camera locations used for the
demonstration of self-healing.
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The first mask that was applied was for generating the
highest airy mode (i.e., the highest term of eq 10). The
detected first diffraction order compared to the expected
theoretical result (calculated using Fraunhofer diffraction
integral) is shown in Figure 3a. The agreement between the
two is quite good. Next, we applied the mask to generate the
SOAP beam with a = 1.5. The detected first diffraction order is
shown in Figure 3b, together with the expected theoretical
image. Again, the measured image shows good agreement with
theory. It is apparent that the SOAP image exhibits fast spatial
oscillations in the form of small spots (a few of which are
marked with white dashed circles in Figure 3b and with a
dashed black box in Figure 3c, which are faster than the

variations in the highest Airy mode. For both the SOAP and the
highest Airy mode images, we have extracted a line-out along
the marked horizontal white line. The SOAP superoscillations
are faster than the highest Airy mode oscillations by
approximately 25%, which is within 90% agreement with
theoretical data. As these superoscillations manifest in spots
which are smaller than those associated with the highest Airy
mode, and as the Airy mode is very well approximated using a
(chirped) sine function, these spots are focused below the
Fourier limit. Generally, this can be contrasted to the diffraction
limit (associated with Abbe limit in imaging) where the root-
mean-square width of a focused beam is bounded by space-
frequency uncertainty relation whose minimum is achieved

Figure 3. SOAP: measurement (left column) vs theory (right column). (a) 2D highest Airy mode intensity. (b) 2D SOAP intensity. White dashed
circles mark several locations at which superoscillations are observed. (c) Intensity of the SOAP and highest Airy mode along the white horizontal
line-outs in (a) and (b). The dashed boxes enclose the superoscillatory regions. The anomalously large measured oscillation in the left box is due to
experimental imperfections.
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when the spectral phase of the beam is at most linear in
frequency. In contrast, superoscillating functions can gain
arbitrarily narrow features at the expense of an increase in the
overall root mean square width of the whole signal (as well as in
the amplitude of the feature). In this case the spectral phase of
the signal would not be linear.
Next, in order to demonstrate the ability to tune the SOAP

characteristics we applied binary masks to generate SOAPs with
values of a = 1.1, a = 1.4, and a = 1.7. The detected intensity of
the first diffraction order together with line-outs at identical
coordinates are shown for each case in Figure 4a and in Figure
4b, correspondingly. In Figure 4b we also bring the line-out for
the measured highest Airy mode (for which a = 1). It can be
seen that with the increase of a the superoscillations’ visibility
becomes smaller while their local frequency increases. We can
also see the important SOAP feature in which its strongest lobe
is narrower and more visible than the main lobe of the highest
Airy mode as the parameter a increases.
A comparison of the measurements with theoretical

predictions is shown in Figure 4c. In general, the agreement
is quite good. Theoretically the intensity ratio between the
strongest lobe to the second strongest lobe should increase

with a to have the values 1.07, 2.4, and 3.64 for a = 1.1, 1.4, and
1.7, correspondingly. The measured ratios were 1.24, 2.27, and
2.07. The first two cases are in good agreement with theory.
The deviation of the third case is attributed to some small
imperfections in the experimental setup (notice that the overall
behavior is very close to theory).
Finally, we demonstrate that the SOAP exhibits self-healing

properties. For this we use again the mask for a SOAP with a =
1.5 and measured the first diffraction order intensity patterns at
three positions relative to the focal point: z0 = 0 cm, z1 = 2 cm,
and z2 = 4 cm. (These positions are denoted in Figure 2.)
The detected images are shown in Figure 5a. It can be seen

that, up to z2, the superoscillating salient features of the image
are conserved. This is because the distance z2 is small enough
that the different acceleration rates of the Airy modes do not
result in disintegration of the SOAP. In particular, at z2 the
maximum relative parabolic deflection of the modes (calculated
through the kinematical ballistic equation of Airy beams3 to be
0.82 μm) is much smaller than the width of the superoscillatory
spots (measured to be ∼120 μm). Next, we position a 180 μm
diameter copper wire in the location z−1 = −1 cm. Now images
are taken again at the locations z0, z1, and z2, the results of

Figure 4. SOAP tuning. (a) Measured SOAP intensity for a = 1.1 (left), a = 1.4 (middle), and a = 1.7 (right). (b) Left: Measured intensity of the
SOAP along the vertical white line in (a) for a = 1, 1.1, 1.4, and 1.7. Notice that for a = 1, the SOAP is identical to its highest Airy mode. Black
dotted box encapsulate the superoscillatory region. Right: closeup of the dotted box on the left. The long edges of the dotted blue, red, and yellow
boxes are equivalent to the superoscillation periods for a = 1.1, 1.4, and 1.7, respectively. (c) Measured (continuous blue line) and theoretical
(dashed red line) SOAP intensity for a = 1.1, 1.4, and 1.7.
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which are shown in Figure 5b. The wire blocks a dominant
superoscillatory feature (marked with a white circle) at z0. As z
increases the superoscillatory feature regenerates. This can be
clearly seen at the line-outs shown in Figure 5c. In general, Airy
modes healing is due to energy flow from adjacent lobes.4 The
healing distance observed in our experiment is within the same
range predicted analytically when the main lobe of each Airy
beam is blocked.25

■ CONCLUSIONS AND DISCUSSION

We theoretically and experimentally demonstrated that a
judicious selection of Airy beams can interfere to create a
pattern with some unique properties. In particular the pattern is
superoscillating, exhibiting a 2D array of sub-Fourier focused
spots, as well a thinner and more visible main lobe. Thus, we
named it a Super-Oscillating Airy Pattern (SOAP). In addition
the SOAP possess self-healing properties. The parameters of
the SOAP are tunable; it has free parameters (N and a) that
determine the visibility, extent, and size of its superoscillating
spots. The unique properties of the SOAP might be used in

applications such as imaging, particle manipulation, and
nonlinear optics. In particular, considering imaging, although
the gain in resolution achieved through superoscillating
functions comes at the expense of amplitude at the
subdiffraction spots, as long as the balance between resolution
and amplitude allows for better imaging visibility than with a
diffraction limited system, super-resolution would be estab-
lished. This was proved experimentally in several works.16,17

Previous use of Airy beams for super-resolution imaging8

suggests that the SOAP can be useful for this purpose as well.
In addition, regarding particle manipulation, the existence of a
narrower major lobe in the SOAP can lead to better particle
localization. The SOAP is essentially a wave phenomena which
utilizes properties of its constituent modes (nondiffraction and
spatial acceleration) in a specific interference pattern. As such, it
might also be relevant to other types of waves, such as acoustic,
water, or quantum wave functions.
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Figure 5. SOAP self-healing. (a) Measured SOAP intensity at distances z = z0 = 0 cm, z1 = 2 cm, z2 = 4 cm relative to lens L3 focal point (see Figure
2). The relevant superoscillation to be blocked is marked with a white dashed circle. (b) Measured SOAP intensity at distances z = z0 = 0 cm, z1 = 2
cm, z2 = 4 cm when a wire is located at z = z−1 = −1 cm. (c) SOAP intensity taken along the horizontal line-outs in (a) and (b) without (blue line)
and with (red line) the obstacle at distances z = z0 = 0 cm, z1 = 2 cm, z2 = 4 cm. The black arrow mark the relevant superoscillation.
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